Операционные системы. Назначение и характеристики ос

Все многообразие существующих (и ныне не использующихся) ОС можно классифицировать по множеству различных признаков. Остановимся на базовых классификационных признаках.

1. По назначению ОС делятся на универсальные и специализированные. Специализированные ОС, как правило, работают с фиксированным набором программ (функциональных задач). Применение таких систем обусловлено невозможностью использования универсальной ОС по соображениям эффективности, надежности, защищенности и т.п., а также вследствие специфики решаемых задач .

Универсальные ОС рассчитаны на решение любых задач пользователœей, но, как правило, форма эксплуатации вычислительной системы может предъявлять особые требования к ОС, ᴛ.ᴇ. к элементам ее специализации.

2. По способу загрузки можно выделить загружаемые ОС (большинство) и системы, постоянно находящиеся в памяти вычислительной системы. Последние, как правило, специализированные и используются для управления работой специализированных устройств (к примеру, в БЦВМ баллистической ракеты или спутника, научных приборах, автоматических устройствах различного назначения и др.).

3. По особенностям алгоритмов управления ресурсами . Главным ресурсом системы является процессор, в связи с этим дадим классификацию по алгоритмам управления процессором, хотя можно, конечно, классифицировать ОС по алгоритмам управления памятью, устройствами ввода-вывода и.т.д.

Поддержка многозадачности (многопрограммности). По числу одновременно выполняемых задач ОС делятся на 2 класса: однопрограммные (однозадачные) – к примеру, MS-DOS, MSX, и многопрограммные (многозадачные) – к примеру, ОС ЕС ЭВМ, OS/360, OS/2, UNIX, Windows разных версий.

ü Однопрограммные ОС предоставляют пользователю виртуальную машину, делая более простым и удобным процесс взаимодействия пользователя с компьютером. Οʜᴎ также имеют средства управления файлами, периферийными устройствами и средства общения с пользователœем.

ü Многозадачные ОС, кроме того, управляют разделœением совместно используемых ресурсов (процессор, память, файлы и т.д.), это позволяет значительно повысить эффективность вычислительной системы.

Поддержка многопользовательского режима. По числу одновременно работающих пользователœей ОС делятся: на однопользовательские (MS-DOS, Windows 3х, ранние версии OS/2) и многопользовательские (UNIX, Windows NT/2000/2003/XP/Vista).

Главное отличие многопользовательских систем от однопользовательских – наличие средств защиты информации каждого пользователя от несанкционированного доступа других пользователœей. Следует заметить, что должна быть однопользовательская мультипрограммная система.

Виды многопрограммной работы. Специфику ОС во многом определяет способ распределœения времени между несколькими одновременно существующими в системе процессами (или потоками). По этому признаку можно выделить 2 группы алгоритмов: не вытесняющая многопрограммность (Windows3.x, NetWare) и вытесняющая многопрограммность (Windows 2000/2003/XP, OS/2, Unix).

В первом случае активный процесс выполняется до тех пор, пока он сам не отдает управление операционной системе. Во втором случае решение о переключении процессов принимает операционная система. Возможен и такой режим многопрограммности, когда ОС разделяет процессорное время между отдельными ветвями (потоками, волокнами) одного процесса.

Многопроцессорная обработка. Важное свойство ОС – отсутствие или наличие средств поддержки многопроцессорной обработки. По этому признаку можно выделить ОС без поддержки мультипроцессирования (Windows 3.x, Windows 95) и с поддержкой мультипроцессирования (Solaris, OS/2, UNIX, Windows NT/2000/2003/XP).

Многопроцессорные ОС классифицируются по способу организации вычислительного процесса на асимметричные ОС (выполняются на одном процессоре, распределяя прикладные задачи по остальным процессорам) и симметричные ОС (децентрализованная система).

4. По области использования и форме эксплуатации. Обычно здесь выделяют три типа в соответствии с использованными при их разработке критериями эффективности:

Системы пакетной обработки (OS/360, OC EC);

Системы разделœения времени (UNIX, VMS);

Системы реального времени (QNX, RT/11).

Первые предназначались для решения задач в основном вычислительного характера, не требующих быстрого получения результатов. Критерий создания таких ОС – максимальная пропуская способность при хорошей загрузке всœех ресурсов компьютера. В таких системах пользователь отстранен от компьютера.

Системы разделœения времени обеспечивают удобство и эффективность работы пользователя, который имеет терминал и может вести диалог со своей программой.

Системы реального времени предназначены для управления техническими объектами (станок, спутник, технологический процесс, к примеру доменный и т.п.), где существует предельное время на выполнение программ, управляющих объектом.

5. По аппаратной платформе(типу вычислительной техники), для которой они предназначаются, операционные системы делят на следующие группы.

Операционные системы для смарт-карт. Некоторые из них могут управлять только одной операцией, к примеру, электронным платежом. Некоторые смарт-карты являются JAVA-ориентированным и содержат интерпретатор виртуальной машины JAVA. Апплеты JAVA загружаются на карту и выполняются JVM-интерпретатором. Некоторые из таких карт могут одновременно управлять несколькими апплетами JAVA, что приводит к многозадачности и крайне важно сти планирования.

Встроенные операционные системы. Управляют карманными компьютерами (lialm OS, Windows CE – Consumer Electronics – бытовая техника), мобильными телœефонами, телœевизорами, микроволновыми печами и т.п.

Операционные системы для персональных компьютеров, к примеру, Windows 9.x, Windows ХР, Linux, Mac OSX и др.

Операционные системы мини-ЭВМ, к примеру, RT-11 для PDP-11 – OC реального времени, RSX-11 M для PDP-11 – ОС разделœения времени, UNIX для PDP-7.

Операционные системы мэйнфреймов (больших машин), к примеру, OS/390, происходящая от OS/360 (IBM). Обычно ОС мэйнфреймов предполагает одновременно три вида обслуживания: пакетную обработку, обработку транзакций (к примеру, работа с БД, бронирование авиабилетов, процесс работы в банках) и разделœение времени.

Серверные операционные системы, к примеру, UNIX, Windows 2000, Linux. Область применения – ЛВС, региональные сети, Intranet, Internet.

Кластерные операционные системы. Кластер – слабо связанная совокупность нескольких вычислительных систем, работающих совместно для выполнения общих приложений и представляющихся пользователю единой системной, к примеру, Windows 2000 Cluster Server, Windows 2008 Server, Sun Cluster (базовая ОС – Solaris).

Классификация операционных систем - понятие и виды. Классификация и особенности категории "Классификация операционных систем" 2017, 2018.

Классификация операционных систем

операционный программа информационный

Классификация операционных систем - классификация (от лат. classis - разряд, класс и facio - делаю, раскладываю), операционная система (ОС) - это набор программ, управляющий работой компьютера, других программ, обеспечивающий взаимодействие с пользователем. Единой классификации операционных систем в настоящее время не существует. В зависимости от разных критериев все OС можно разделить на классы.

Наиболее важными из них являются:

* Client / Server;

* бесплатные / платные;

* версия оригинальная / локализованная;

* интерфейс Text Mode / Graphic Mode

* архитектура 16-bit / 32-bit / 64-bit;

* объем большой / маленький;

* версия сетевая / псевдо - сетевая & локальная;

* память процесса с защитой / без защиты;

* однозадачные / многозадачные;

* однопользовательские / многопользовательские;

* стабильная / нестабильная;

* virus friendly / no virus friendly.

Классификация ОС по функциональным признакам

Основными функциями ОС является:

* распределение ОЗУ между программами;

* организация очередности исполнения программ и ЦП;

* обеспечение взаимодействия пользователя с компьютером.

Операционные системы могут различаться особенностями реализации внутренних алгоритмов управления основными ресурсами компьютера (процессорами, памятью, устройствами), особенностями использованных методов проектирования, типами аппаратных платформ, областями использования и многими другими свойствами.

Поддержка многозадачности

По числу одновременно выполняемых задач операционные системы могут быть разделены на два класса:

* однозадачные (например, MS-DOS, MSX);

* многозадачные (OC EC, OS/2, UNIX, Windows 95/NT).

Однозадачные ОС в основном выполняют функцию предоставления пользователю виртуальной машины, делая более простым и удобным процесс взаимодействия пользователя с компьютером. Однозадачные ОС включают средства управления периферийными устройствами, средства управления файлами, средства общения с пользователем.

Многозадачные ОС, кроме вышеперечисленных функций, управляют разделением совместно используемых ресурсов, таких как процессор, оперативная память, файлы и внешние устройства.

Поддержка многопользовательского режима

По числу одновременно работающих пользователей ОС делятся на:

* однопользовательские (MS-DOS, Windows 3.x, ранние версии OS/2);

* многопользовательские (UNIX, Windows NT).

Главным отличием многопользовательских систем от однопользовательских является наличие средств защиты информации каждого пользователя от несанкционированного доступа других пользователей. Следует заметить, что не всякая многозадачная система является многопользовательской, и не всякая однопользовательская ОС является однозадачной.

Вытесняющая и не вытесняющая многозадачность

Важнейшим разделяемым ресурсом является процессорное время. Способ распределения процессорного времени между несколькими одновременно существующими в системе процессами (или нитями) во многом определяет специфику ОС. Среди множества существующих вариантов реализации многозадачности можно выделить две группы алгоритмов:

* не вытесняющая многозадачность (NetWare, Windows 3.x);

* вытесняющая многозадачность (Windows NT, OS/2, UNIX).

Основным различием между вытесняющим и не вытесняющим вариантами многозадачности является степень централизации механизма планирования процессов. В первом случае механизм планирования процессов целиком сосредоточен в операционной системе, а во втором - распределен между системой и прикладными программами. При не вытесняющей многозадачности активный процесс выполняется до тех пор, пока он сам, по собственной инициативе, не отдаст управление операционной системе для того, чтобы та выбрала из очереди другой готовый к выполнению процесс. При вытесняющей многозадачности решение о переключении процессора с одного процесса на другой принимается операционной системой, а не самим активным процессом.

Поддержка много поточности

Важным свойством операционных систем является возможность распараллеливания вычислений в рамках одной задачи. Много поточная ОС разделяет процессорное время не между задачами, а между их отдельными ветвями (потоками).

Многопроцессорная обработка

Другим важным свойством ОС является отсутствие или наличие в ней средств поддержки многопроцессорной обработки - мультипроцессирование. Мультипроцессирование приводит к усложнению всех алгоритмов управления ресурсами.

В наши дни становится общепринятым введение в ОС функций поддержки многопроцессорной обработки данных. Такие функции имеются в операционных системах Solaris 2.x фирмы Sun, Open Server 3.x компании Santa Crus Operations, OS/2 фирмы IBM, Windows NT фирмы Microsoft и NetWare 4.1 фирмы Novell.

Многопроцессорные ОС могут классифицироваться по способу организации вычислительного процесса в системе с многопроцессорной архитектурой:

* асимметричные ОС;

* симметричные ОС.

Асимметричная ОС целиком выполняется только на одном из процессоров системы, распределяя прикладные задачи по остальным процессорам. Симметричная ОС полностью децентрализована и использует весь пул процессоров, разделяя их между системными и прикладными задачами.

Поддержка сети

Выше были рассмотрены характеристики ОС, связанные с управлением только одним типом ресурсов - процессором. Важное влияние на облик операционной системы в целом, на возможности ее использования в той или иной области оказывают особенности и других подсистем управления локальными ресурсами - подсистем управления памятью, файлами, устройствами ввода-вывода.

Специфика ОС проявляется и в том, каким образом она реализует сетевые функции: распознавание и перенаправление в сеть запросов к удаленным ресурсам, передача сообщений по сети, выполнение удаленных запросов. При реализации сетевых функций возникает комплекс задач, связанных с распределенным характером хранения и обработки данных в сети: ведение справочной информации о всех доступных в сети ресурсах и серверах, адресация взаимодействующих процессов, обеспечение прозрачности доступа, тиражирование данных, согласование копий, поддержка безопасности данных.

Сетевая ОС имеет в своем составе средства передачи сообщений между компьютерами по линиям связи, которые совершенно не нужны в автономной ОС. На основе этих сообщений сетевая ОС поддерживает разделение ресурсов компьютера между удаленными пользователями, подключенными к сети. Для поддержания функций передачи сообщений сетевые ОС содержат специальные программные компоненты, реализующие популярные коммуникационные протоколы, такие как IP, IPX, Ethernet и другие.

Многопроцессорные системы требуют от операционной системы особой организации, с помощью которой сама операционная система, а также поддерживаемые ею приложения могли бы выполняться параллельно отдельными процессорами системы. Параллельная работа отдельных частей ОС создает дополнительные проблемы для разработчиков ОС, так как в этом случае гораздо сложнее обеспечить согласованный доступ отдельных процессов к общим системным таблицам, исключить эффект гонок и прочие нежелательные последствия асинхронного выполнения работ.

Существует несколько схем классификации операционных систем . Ниже приведена классификация по некоторым признакам с точки зрения пользователя.

По количеству одновременно работающих пользователей:

  • Однопользовательские ОС позволяют работать на компьютере только одному человеку.
  • Многопользовательские ОС поддерживают одновременную работу на ЭМВ нескольких пользователей за различными терминалами.

По числу процессов, одновременно выполняемых под управлением системы:

  • Однозадачные ОС поддерживают выполнение только одной программы в отдельный момент времени, то есть позволяют запустить одну программу в основном режиме.
  • Многозадачные ОС (мультизадачные) поддерживают параллельное выполнение нескольких программ, существующих в рамках одной вычислительной системы на некотором отрезке времени, то есть позволяют запустить одновременно несколько программ, которые будут работать параллельно, не мешая друг другу.

При многозадачном режиме, в оперативной памяти находится несколько заданий пользователей, время работы процессора разделяется между программами, находящимися в оперативной памяти и готовыми к обслуживанию процессором, Параллельно с работой процессора происходит обмен информацией с различными внешними устройствами.

Современные ОС поддерживают многозадачность, создавая иллюзию одновременной работы нескольких программ на одном процессоре. На самом деле за фиксированный период времени процессор обрабатывает только один процесс, а процессорное время делится между программами, организуя тем самым параллельную работу. Это замечание не относится к многопроцессорным системам, в которых в действительности в один момент времени могут выполняться несколько задач.

Многозадачная ОС, решая проблемы распределения ресурсов и конкуренции, полностью реализует мультипрограммный (многозадачный) режим. Многозадачный режим, который воплощает в себе идею разделения времени, называется вытесняющим (preemptive). Каждой программе выделяется квант процессорного времени, по истечении которого управление передается другой программе. Говорят, что первая программа будет вытеснена. В вытесняющем режиме работают пользовательские программы большинства ОС.

По количеству поддерживаемых процессоров (однопроцессорные, многопроцессорные):

Многопроцессорные ОС поддерживают режим распределения ресурсов нескольких процессоров для решения той или иной задачи. При многопроцессорном режиме работы два или несколько соединенных и примерно равных по характеристикам процессора совместно выполняют один или несколько процессов (программ или наборов команд). Цель такого режима – увеличение быстродействия или вычислительных возможностей.
Многопроцессорные ОС разделяют на симметричные и асимметричные. В симметричных ОС на каждом процессоре функционирует одно и то же ядро, и задача может быть выполнена на любом процессоре, то есть обработка полностью децентрализована. При этом каждому из процессоров доступна вся память.
В асимметричных ОС процессоры неравноправны. Обычно существует главный процессор (master) и подчиненные (slave), загрузку и характер работы которых определяет главный процессор.

По типу доступа пользователя к ЭВМ (с пакетной обработкой, с разделением времени, реального времени):

ОС пакетной обработки : в них из программ, подлежащих выполнению, формируется пакет (набор) заданий, вводимых в ЭВМ и выполняемых в порядке очередности с возможным учетом приоритетности.

ОС разделения времени обеспечивают одновременный диалоговый (интерактивный) режим доступа к ЭВМ нескольких пользователей на разных терминалах, которым по очереди выделяются ресурсы машины, что координируется операционной системой в соответствии с заданной дисциплиной обслуживания. Каждой программе, находящейся в оперативной памяти и готовой к исполнению, выделяется для исполнения фиксированный, задаваемый в соответствии с приоритетом пользователя интервал времени (интервал мультиплексирования). Если программа не выполнена до конца за этот интервал, ее исполнение принудительно прерывается, и программа переводится в конец очереди. Из начала очереди извлекается следующая программа, которая исполняется в течение соответствующего интервала мультиплексирования, затем поступает в конец очереди и т.д. в соответствии с циклическим алгоритмом.

ОС реального времени обеспечивают определенное гарантированное время ответа машины на запрос пользователя с управлением им какими-либо внешними по отношению к ЭВМ событиями, процессами или объектами. При таком режиме ЭВМ управляет некоторым внешним процессом, обрабатывая данные и информацию, непосредственно поступающую от объекта управления.

По разрядности кода операционной системы: восьмиразрядные, шестнадцатиразрядные, тридцатидвухразрядные, шестидесяти четырехразрядные:

Разрядность кода – это разрядность используемых аппаратных средств (например, использование 32-разрядных регистров для процессоров). Подразумевается, что разрядность ОС не может превышать разрядности процессора.

По типу интерфейса (командные (текстовые), объектно-ориентированные (как, правило, графические):

Пользовательский интерфейс – это программные и аппаратные средства взаимодействия пользователя с программой или ЭВМ. Пользовательский интерфейс бывает командным и объектно-ориентированным.

Командный интерфейс предполагает ввод пользователем команд с клавиатуры при выполнении действий по управлению ресурсами компьютера. При этой технологии в качестве единственного способа ввода информации от человека к компьютеру служит клавиатура, а компьютер выводит информацию человеку с помощью монитора. Эту комбинацию (монитор + клавиатура) стали называть консолью .

Команды набираются в командной строке. Командная строка представляет собой строку приглашения. Команда заканчивается нажатием клавиши Enter. После этого осуществляется переход в начало следующей строки. Именно с этой позиции компьютер выдает на монитор результаты своей работы. Затем процесс повторяется.

Примечание

В командной строке записана команда создания (md) каталога Kat1 в корневом каталоге диска C.

Объектно-ориентированный интерфейс – это управление ресурсами вычислительной системы посредством осуществления операций над объектами, представляющими файлы, каталоги (папки), дисководы, программы, документы и т.д.

Разновидностью объектно-ориентированного интерфейса является графический WIMP — интерфейс (Window — окно, Image — образ, Menu — меню, Pointer — указатель). Характерной особенностью этого вида интерфейса является то, что диалог с пользователем ведется не с помощью команд, а с помощью графических образов — меню, окон, других элементов. Хотя и в этом интерфейсе подаются команды машине, но это делается «опосредованно», через графические образы. Этот вид интерфейса реализован на двух уровнях технологий: простой графический интерфейс и «чистый» WIMP-интерфейс, пример графический WIMP-интерфейс ОС Windows.

Кроме названных основных видов интерфейса можно выделить еще один – SILK — интерфейс (Speech — речь, Image — образ, Language — язык, Knowlege — знание). Этот вид интерфейса наиболее приближен к обычной, человеческой форме общения. В рамках этого интерфейса идет обычный «разговор» человека и компьютера. При этом компьютер находит для себя команды, анализируя человеческую речь и находя в ней ключевые фразы. Результат выполнения команд он также преобразует в понятную человеку форму.

По типу использования ресурсов (сетевые, не сетевые): Сетевые ОС: Novell NetWare, Windows 2008 Server.

Сетевые ОС предназначены для управления ресурсами компьютеров, объединенных в сеть с целью совместного использования данных, и предоставляют мощные средства разграничения доступа к данным в рамках обеспечения их целостности и сохранности, а также множество сервисных возможностей по использованию сетевых ресурсов.

По особенностям методов построения : монолитное ядро или микроядерный подход.

При описании операционной системы часто указываются особенности ее структурной организации и основные концепции, положенные в ее основу.

Способы построения ядра системы — монолитное ядро или микроядерный подход . Большинство ОС использует монолитное ядро, которое компонуется как одна программа, работающая в привилегированном режиме и использующая быстрые переходы с одной процедуры на другую, не требующие переключения из привилегированного режима в пользовательский и наоборот. Альтернативой является построение ОС на базе микроядра, работающего также в привилегированном режиме и выполняющего только минимум функций по управлению аппаратурой, в то время как функции ОС более высокого уровня выполняют специализированные компоненты ОС — серверы, работающие в пользовательском режиме. При таком построении ОС работает более медленно, так как часто выполняются переходы между привилегированным режимом и пользовательским, зато система получается более гибкой — ее функции можно наращивать, модифицировать или сужать, добавляя, модифицируя или исключая серверы пользовательского режима. Кроме того, серверы хорошо защищены друг от друга, как и любые пользовательские процессы.

Билет.

1. 1. СТРУКТУРА КОМПЬЮТЕРА:

2. 2. Определить количество информации, получаемое при реализации одного из событий, если бросают

а) несимметричную четырехгранную пирамидку;

б) симметричную и однородную четырехгранную пирамидку.

1.Микропроцессор -центральное обрабатывающее устройство, исполняющее машинные инструкции (код программ). Мат. плата - объединяет и координирует работу комплектующих, как процессор, оперативная память, платы расширения и всевозможные накопители. Арифметико-логическое устройство (АЛУ) предназначено для выполнения арифметических и логических операций преобразования информации. Микропроцессорная память - память небольшой емкости, но чрезвычайно высокого быстродействия, она предназначена для кратковременного хранения, записи и выдачи информации. Интерфейсная сист. пк - Системная шина (FSB) – канал, по которому процессор соединен с другими устройствами компьютера.К шине напрямую подключен только процессор, другие устройства компьютера подключены к ней через разнообразные контроллеры. Центральный процессор через Системную шину (FSB) подключается к системному контроллеру (Северный Мост илиNorth Bridge). Шина - в архитектуре компьютера подсистема, которая передаёт данные между функциональными блоками компьютера. Обычно шина управляется драйвером. Северный мост - системный контроллер - обеспечивает подключение ЦПУ к узлам, использующим высокопроизводительные шины: ОЗУ, графический контроллер. Обычно к системному контроллеру подключается ОЗУ. В таком случае он содержит в себе контроллер памяти. Южный мост - периферийный контроллер - содержит контроллеры периферийных устройств (жёсткого диска, Ethernet, аудио), контроллеры шин для подключения периферийных устройств (шины PCI, PCI Express и USB), а также контроллеры шин, к которым подключаются устройства, не требующие высокой пропускной способности.Оперативная память(ОЗУ) - энергозависимая часть системы компьютерной памяти, в которой временно хранятся данные и команды, необходимые процессору для выполнения им операции. Постоянное запоминающее устройство (ПЗУ) - энергонезависимая память, используется для хранения массива неизменяемых данных. Внешняя память – Накопители на гибких магнитных дисках (НГМД), Накопители на жестких магнитных дисках (НЖМД) информационной емкостью от 1 до десятков Гб, Накопители CD-ROM емкостью 640 Мб, Накопители DVD-ROM емкостью до 17 Гб.BIOS - реализованная в виде микропрограмм часть системного программного обеспечения, которая предназначается для предоставления операционной системе API доступа к аппаратуре компьютера и подключенным к нему устройствам.


2. Формула Хартли

I = log 2 K ,
Где К - количество равновероятных событий; I - количество бит в сообщении.

K=2 I ,I = log 2 K = log 2 (1 / р) = - log 2 р, р = 1 / К, то К = 1 / р.

Будем бросать несимметричную четырехгранную пирамидку.
Вероятность отдельных событий будет такова:
р1 = 1 / 2,
р2 = 1 / 4,
р3 = 1 / 8,
р4 = 1 / 8,
тогда количество информации, получаемой после реализации одного из этих событий, рассчитывается по формуле:
I = -(1 / 2 log2 1/2 + 1 / 4 log2 1/4 + 1 / 8 log2 1/8 + 1 / 8 log2 1/8) = 1 / 2 + 2 / 4 + + 3 / 8 + 3 / 8 = 14/8 = 1,75 (бит).
б) Теперь рассчитаем количество информации, которое получится при бросании симметричной и однородной четырехгранной пирамидки:
I = log2 4 = 2 (бит).

Билет.

1. ЧТО ПОНИМАЕТСЯ ПОД ОПЕРАЦИОННОЙ СИСТЕМОЙ? РАЗНОВИДНОСТИ ОПЕРАЦИОННЫХ СИСТЕМ. КЛАССИФИКАЦИЯ ПО.

  1. Вероятность перового события составляет 0,5, а второго и третьего 0,25. Какое количество информации мы получим после реализации одного из них?

Операционная система - комплекс программ, обеспечивающий управление аппаратными средствами компьютера, организующий работу с файлами и выполнение прикладных программ, осуществляющий ввод и вывод данных.

В зависимости от количества одновременно обрабатываемых задач и числа пользователей, которых могут обслуживать ОС, различают четыре основных класса операционных систем:

-однопользовательские однозадачные , которые поддерживают одну клавиатуру и могут работать только с одной (в данный момент) задачей;

-однопользовательские однозадачные с фоновой печатью , которые позволяют помимо основной задачи запускать одну дополнительную задачу, ориентированную, как правило, на вывод информации на печать. Это ускоряет работу при выдаче больших объёмов информации на печать;

-однопользовательские многозадачные , которые обеспечивают одному пользователю параллельную обработку нескольких задач. Например, к одному компьютеру можно подключить несколько принтеров, каждый из которых будет работать на "свою" задачу;

-многопользовательские многозадачные , позволяющие на одном компьютере запускать несколько задач нескольким пользователям. Эти ОС очень сложны и требуют значительных машинных ресурсов.

ПО - Совокупность программ системы обработки информации и программных документов, необходимых для эксплуатации этих программ. Программное обеспечение принято по назначению подразделять на системное, прикладное и инструментальное, а по способу распространения и использования на несвободное (закрытое), открытое и свободное.

Базовое ПО включает в себя: операционные системы; оболочки; сетевые операционные системы.

Сервисное ПО включает в себя программы (утилиты): диагностики; антивирусные; обслуживания носителей; архивирования; обслуживания сети.

Прикладное ПО – это комплекс программ для решения задач определённого класса конкретной предметной области. Прикладное ПО работает только при наличии системного ПО.

Прикладные программы называют приложениями. Они включает в себя:

текстовые процессоры; табличные процессоры; базы данных; интегрированные пакеты; системы иллюстративной и деловой графики (графические процессоры); экспертные системы; обучающие программы; программы математических расчетов, моделирования и анализа; игры; коммуникационные программы.
Промежуточное место занимает особый класс программ -инструментальные ПО, или средства разработки приложений .

Инструментальное программное обеспечение состоит из:

Систем программирования,

Средств разработки и отладки программ.

Системы программирования - это комплекс программ, который облегчает работу программиста.

2. Формула Хартли

I = log 2 K, К = 1 / р (р-вероятность)
K = 1/0,5,I=1 бит

K=1/0,25,I = 2 бит

Билет

1. ОДНОПРОЦЕССОРНЫЕ И МНОГОПРОЦЕССОРНЫЕ ОС. КЛАССИФИКАЦИЯ МНОГОПРОЦЕССОРНЫХ ОС.

2. Сколько различных чисел можно закодировать с помощью 8 бит?

Классификация операционных систем

Однопроцессорные;

Многопроцессорные.

До недавнего времени вычислительные системы имели один центральный процессор. В результате требований к повышению производительности появились многопроцессорные системы, состоящие из двух и более процессоров общего назначения, осуществляющих параллельное выполнение команд. Данный способ увеличения мощности компьютеров заключается в соединении нескольких центральных процессоров в одной системе. В зависимости от вида соединения процессоров и разделения работы такие системы называются параллельными компьютерами, мультикомпьютерами или многопроцессорными системами. Для них требуются специальные операционные системы, но часто они представляют собой варианты серверных операционных систем со специальными возможностями связи.

Поддержка мультипроцессирования является важным свойством операционных систем и приводит к усложнению всех алгоритмов управления ресурсами. Многопроцессорная обработка реализована в операционных системах: Linux, Solaris, Windows NT и др. Многопроцессорные операционные системы подразделяются:

– на симметричные – на каждом процессоре функционирует одно и то же ядро и задача может быть выполнена на любом процессоре, т. е. обработка полностью децентрализована, при этом каждому из процессоров доступна вся память;

– асимметричные – системы, в которых процессоры неравноправны, обычно существует главный процессор (master) и подчиненные (slave), загрузку и характер работы которых определяет главный процессор.

2. I=8 бит, K=2 I =2 8 =256 различных чисел.

Билет

1. КЛАССИФИКАЦИЯ ОС ПО ТИПУ АППАРАТУРЫ. КЛАССИФИКАЦИЯ МНОГОЗАДАЧНЫХ ОС

2. В коробке 32 карандаша, все карандаши разного цвета. Наугад вытащили красный. Какое количество информации при этом было получено?

1. По типу аппаратуры различают ОС персональных компьютеров, мини-компьютеров, мейнфреймов, кластеров и компьютерных сетей. Наряду с ОС, ориентированными на совершенно определенный тип аппаратной платформы, существуют ОС, специально разработанные таким образом, чтобы они могли быть легко перенесены с компьютера одного типа на компьютер другого типа, так называемые мобильные или многоплатформенные ОС. Наиболее ярким примером такой ОС является популярная система UNIX. В этих системах аппаратно-зависимые места тщательно локализованы, так что при переносе системы на новую платформу переписываются только они. Средством, облегчающим перенос остальной части ОС, является написание ее на машинно-независимом языке, например, на Си, который и был разработан для программирования операционных систем.

Многозадачные операционные системы – системы, которые поддерживают параллельное выполнение нескольких программ в рамках одной вычислительной системы в один момент времени, например: UNIX, OS/2, Windows.

Многозадачная операционная система, решая проблемы распределения ресурсов и конкуренции, полностью реализует мультипрограмный режим . Многозадачный режим, который воплощает в себе идею разделения времени, называется вытесняющим (preemptive ). Каждой программе выделяется квант процессорного времени, по истечении которого управление передается другой программе. В таком режиме работают пользовательские программы большинства коммерческих операционных систем. В некоторых операционных системах (Windows 3.11 ) пользовательская программа может монополизировать процессор, т. е. работает вневытесняющем режиме . Как правило, в большинстве систем код операционной системы не подлежит вытеснению, ответственные программы, в частности задачи реального времени, также не вытесняются.

К многозадачным относятся операционные системы:

пакетной обработки

разделения времени

реального времени

2. Так как вытаскивание карандаша любого цвета из имеющихся в коробке 32 карандашей является равновероятным, то число возможных событий равно 32.

N = 32, i = ? N = 2 i , 32 = 25, i = 5 бит.

Билет

1. ПОНЯТИЕ СЕТЕВОЙ ОС, ВАРИАНТЫ ИХ ПОСТРОЕНИЯ. КЛАССИФИКАЦИЯ МНОГОЗАДАЧНЫХ ОС

  1. В коробке 50 шаров, из них 40 белых и 10 чёрных. Определить количество информации в сообщении о вытаскивании наугад белого шара и чёрного шара

1.Сетевая операционная система - операционная система со встроенными возможностями для работы в компьютерных сетях.

В сетевой операционной системе отдельной машины можно выделить несколько частей:

Средства управления локальными ресурсами компьютера: функции распределения оперативной памяти между процессами, планирования и диспетчеризации процессов, управления процессорами в мультипроцессорных машинах, управления периферийными устройствами и другие функции управления ресурсами локальных ОС.

Средства предоставления собственных ресурсов и услуг в общее пользование - серверная часть ОС (сервер). Эти средства обеспечивают, например, блокировку файлов и записей, что необходимо для их совместного использования; ведение справочников имен сетевых ресурсов; обработку запросов удаленного доступа к собственной файловой системе и базе данных; управление очередями запросов удаленных пользователей к своим периферийным устройствам.

Средства запроса доступа к удаленным ресурсам и услугам и их использования - клиентская часть ОС (редиректор). Эта часть выполняет распознавание и перенаправление в сеть запросов к удаленным ресурсам от приложений и пользователей, при этом запрос поступает от приложения в локальной форме, а передается в сеть в другой форме, соответствующей требованиям сервера. Клиентская часть также осуществляет прием ответов от серверов и преобразование их в локальный формат, так что для приложения выполнение локальных и удаленных запросов неразличимо.

Коммуникационные средства ОС, с помощью которых происходит обмен сообщениями в сети. Эта часть обеспечивает адресацию и буферизацию сообщений, выбор маршрута передачи сообщения по сети, надежность передачи и т.п., то есть является средством транспортировки сообщений.

В зависимости от функций, возлагаемых на конкретный компьютер, в его операционной системе может отсутствовать либо клиентская, либо серверная части.

Примеры сетевых операционных систем:

Novell NetWare, LANtastic, Microsoft Windows (NT, XP, Vista, Seven), Различные UNIX системы, такие как Solaris, FreeBSD и др.

К многозадачным относятся операционные системы:

пакетной обработки – из программ, подлежащих выполнению, формируется пакет (набор) заданий, вводимых в ЭВМ и выполняемых в порядке очередности с возможным учетом приоритетности;

разделения времени – системы, которые обеспечивают одновременный диалоговый (интерактивный) режим доступа к ЭВМ пользователей на разных терминалах, которым по очереди выделяются ресурсы машины, что координируется операционной системой в соответствии с заданной дисциплиной обслуживания;

реального времени – системы, которые обеспечивают определенное гарантированное время ответа машины на запрос пользователя при управлении им внешними событиями, процессами или объектами по отношению к ЭВМ.

2. Вероятность вытаскивания белого шара
P1 = 40/50 = 0,8
Вероятность вытаскивания чёрного шара
P2 = 10/50 = 0,2
Количество информации о вытаскивании белого шара I1 = log2(1/0,8) = log21,25 = log1,25/log2 = 0,32 бит
Количество информации о вытаскивании чёрного шара I2 = log2(1/0,2) = log25 = log5/log2 = 2,32 бит
Ответ: 0,32 бит, 2,32 бит

Билет

1. ФАЙЛОВАЯ СИСТЕМА. ТИПЫ ФАЙЛОВ, АТРИБУТЫ ФАЙЛОВ

2. . В озере живут караси и окуни. Подсчитано, что карасей 1500, а окуней - 500. Сколько информации содержится в сообщениях о том, что рыбак поймал карася, окуня, поймал рыбу?

1. Файловая система - порядок, определяющий способ организации, хранения и именования данных на носителях информации в компьютерах, а также в другом электронном оборудовании: цифровых фотоаппаратах, мобильных телефонах и т. п. Файловая система определяет формат содержимого и способ физического хранения информации, которую принято группировать в виде файлов. Конкретная файловая система определяет размер имени файла (папки), максимальный возможный размер файла и раздела, набор атрибутов файла. Некоторые файловые системы предоставляют сервисные возможности, например, разграничение доступа или шифрование файлов.

В различных операционных и/или файловых системах могут быть реализованы различные типы файлов ; кроме того, реализация различных типов может различаться.

«Обыкновенный файл» - файл, позволяющий операции чтения, записи, перемещения внутри файла

Каталог или директория - файл, содержащий записи о входящих в него файлах. Каталоги могут содержать записи о других каталогах, образуя древовидную структуру.

Жёсткая ссылка - в общем случае, одна и та же область информации может иметь несколько имён. Такие имена называют жёсткими ссылками. После создания хардлинка сказать где «настоящий» файл, а где хардлинк невозможно, так как имена равноправны. Сама область данных существует до тех пор, пока существует хотя бы одно из имён. Хардлинки возможны только на одном физическом носителе.

Атрибуты. В некоторых файловых системах, таких как NTFS, предусмотрены атрибуты (обычно это бинарное значение «да»/«нет», кодируемое одним битом). Во многих современных операционных системах атрибуты практически не влияют на возможность доступа к файлам, для этого в некоторых операционных и файловых системах существуют права доступа.

READ ONLY- только для чтения, в файл запрещено писать, опер. сист - DOS, OS/2, Windows

SYSTEM – системный, критический для работы операционной системы файл, опер. сист. - DOS, OS/2, Windows

HIDDEN- скрытый, файл скрывается от показа, пока явно не указано обратное, опер.сист - DOS, OS/2, Windows

ARCHIVE- архивный (требующий архивации), файл изменён после резервного копирования или не был скопирован программами резервного копирования, опер. сист.- DOS, OS/2, Windows

SUID - Установка пользовательского ID, выполнение программы от имени владельца, опер.сист.- Unix-like

SGID- Установка группового ID, выполнение программы от имени группы (для каталогов: любой файл созданный в каталоге с установленным SGID, получит заданную группу-владельца), опер.сист.- Unix-like

Sticky Bit - липкий бит, изначально предписывал ядру не выгружать завершившуюся программу из памяти сразу, а лишь спустя некоторое время, чтобы избежать постоянной загрузки с диска наиболее часто используемых программ, в настоящее время в разных ОС используется по разному, опер. сист- Unix-like

2. События поимки карася или окуня не являются равновероятными, так как окуней в озере меньше, чем карасей.
Общее количество карасей и окуней в пруду 1500 + 500 = 2000.
Вероятность попадания на удочку карася
p1 = 1500/2000 = 0,75, окуня p2 – 500/2000 = 0,25.
I1 = log2(1/p1), I1 = log2(1/p2), где I1 и I2 – вероятности поймать карася и окуня соответственно.
I1 = log2(1 / 0,75) = 0,43 бит, I2 = log2(1 / 0,25) = 2 бит – количество информации в сообщении поймать карася и поймать окуня соответственно.
Количество информации в сообщении поймать рыбу (карася или окуня) рассчитывается по формуле Шеннона
I = - p1log2p1 - p2log2p2
I = - 0,75*log20,75 - 0,25*log20,25 = - 0,75*(log0,75/log2)-0,25*(log0,25/log2) =
= 0,604 бит = 0.6 бит.

Билет.

1. ПОНЯТИЕ ИНФОРМАЦИИ. ИЗМЕРЕНИЕ ИНФОРМАЦИИ. ЕДИНИЦЫ ИЗМЕРЕНИЯ ИНФОРМАЦИИ.

2. Какое количество информации несет в себе сообщение о том, что нужная вам программа находится на одной из восьми дискет?

1. Информация – это знания или сведения о ком-либо или о чем-либо.

Информация – это сведения, которые можно собирать, хранить, передавать, обрабатывать, использовать.

Каждому символу в компьютере соответствует последовательность

из 8 нулей и единиц, называемая байтом:

1 байт = 8 битам

Количество информации при вероятностном подходе можно вычислить, пользуясь следующими формулами:

1). Формула Хартли.

I = log 2 N или 2 I = N,

где N - количество равновероятных событий (число возможных выборов),

I - количество информации.

2). Модифицированная формула Хартли.

и формула имеет вид

I = log 2 (1/p) = - log 2 p

где p- вероятность наступления каждого из N возможных равновероятных событий.

3). Формула Шеннона.

H = S p i h i = - S p i log 2 p i

где pi - вероятность появления в сообщении i-го символа алфавита;

hi = log 2 1/p i = - log 2 p i - количество собственной информации, переносимой одним символом;

Н - среднее значением количества информации.

2. Количество информации вычисляется по формуле: 2i = N, где i - искомая величина, N - количество событий. Следовательно, 23 =8.

Для построения классификации ОС прежде всего необходимо выбрать основание классификации. Таких оснований множество, но наиболее существенными можно считать следующие:

­ область использования ОС;

­ типы аппаратной платформы;

­ методы проектирования;

­ реализация внутренних алгоритмов управления ресурсами.

Классификация по области использования:

­ настольные ОС (Desktop Operating System) - ОС, ориентированные на работу отдельного пользователя в различных предметных областях (разработка программ, работа с документами и т.п.). Основными чертами настольных ОС являются универсальность и ориентированность на пользователя; представители – MacOS, Windows;

­ серверные ОС , использующиеся в серверах сетей как центральное звено, а также в качестве элементов систем управления; основной чертой серверных ОС является надежность; представители – семейство UNIX, Windows NT;

­ специализированные ОС , ориентированные на решение узких классов задач с жестким набором требований (высокопроизводительные вычисления, управление в реальном времени); системы такого рода практически неразрывно связаны с аппаратной платформой; представители – QNX, редуцированные и специализированные версии UNIX, системы собственной разработки;

­ мобильные ОС – вариант развития настольных ОС на аппаратной платформе КПК; основные черты – удобство использования и компактность; представители PalmOS, Windows CE.

Безусловно, данная классификация не является абсолютно жесткой, т.е. одна и та же система может исполнять различные функции. Примером тому служит использование Linux с графической оболочкой в качестве настольной ОС или Windows NT в качестве серверной. Однако каждая ОС «сильна» только в своем классе.

Несложно заметить, что каждый класс ОС из приведенной классификации работает на своей аппаратной платформе , так что эта классификация в той или иной мере является и классификацией по типу этой платформы. Можно, однако, попытаться провести более строгую классификацию такого рода, выделив, в частности, в отдельные классы:

­ ОС для платформы х86, однопроцессорные варианты;

­ ОС для платформы х86, многопроцессорные варианты;

­ ОС для RISC платформ;

­ ОС для мобильных устройств;

­ встраиваемые ОС (ОС таких устройств, как принтеры, ЦФК и т.п.).

По внутренним алгоритмам управления ресурсами можно создать несколько бинарных классификаций:

­ многозадачные /однозадачные ОС;

­ многопользовательские /однопользовательские ОС и т.п.

Сетевые и распределенные ОС

Компьютерная сеть – это набор компьютеров, связанных коммуникационной системой и снабженных соответствующим программным обеспечением, позволяющим пользователям сети получать доступ к ресурсам этого набора. При организации сетевой работы операционная система играет роль интерфейса, экранирующего от пользователя все детали низкоуровневых программно-аппаратных средств сети. В зависимости от того, какой виртуальный образ реальной аппаратуры компьютерной сети создает ОС, различают сетевые и распределенные ОС.

Сетевая ОС предоставляет пользователю некую виртуальную систему, не полностью скрывающую распределенную природу реального прототипа. Пользователь сетевой ОС всегда знает, что он имеет дело с сетевыми ресурсами и что для доступа к ним нужно выполнить некоторые операции; должен знать, где хранятся его файлы, и использовать явные команды для их перемещения, а также знать, на какой машине выполняется его задание.

В идеальном случае ОС должна предоставлять пользователю сетевые ресурсы так, как если бы они были ресурсами единой централизованной виртуальной машины (ресурсы должны быть максимально прозрачными ). Это – магистральное направление развития ОС. Такая операционная система носит название распределенная ОС .

Распределенная ОС существует как единая операционная система в рамках вычислительной системы и заставляет набор сетевых машин работать как виртуальный унипроцессор. Каждый компьютер сети выполняет часть функций этой единой ОС. Пользователь в таком случае, вообще говоря, не имеет сведений о том, на какой машине выполняется его работа. В настоящее время практически все сетевые ОС далеки от идеала истинной распределенности.

Уточним термин «сетевая ОС». На разных компьютерах сети могут работать разные ОС, функционирующие независимо в том смысле, что каждая из них принимает независимые решения о создании и завершении своих собственныхпроцессов и управлении локальными ресурсами . Но в любом случае эти операционные системы должны включать средства для работы в сети:

­ взаимно согласованный набор коммуникационных протоколов для организации взаимодействия процессов, выполняющихся на разных компьютерах;

­ разделения ресурсов этих компьютеров между пользователями сети;

­ подсистемы, организующие работу по этим протоколам.

В итоге ОС получает возможность предоставления своих ресурсов в общее пользование и/или потребления ресурсов других компьютеров. Под сетевой ОС будем понимать операционную систему отдельного компьютера, включающую средства для работы в сети. ОС Windows, начиная с NT, различные варианты ОС Unix (HP-UX компании Hewlett-Packard, Solaris компании Sun, FreeBSD и др.), различные варианты ОС Linux, ОС MacOS, ОС NetWare компании Novell являются сетевыми. Основные функциональные компоненты сетевой ОС показаны на рисунке 1.1.

Средства управления локальными ресурсами реализуют все функции ОС автономного компьютера, описанные выше.

Сетевые средства подразделяются на три компонента:

­ серверная часть ОС – средства предоставления локальных ресурсов и услуг в общее пользование;

­ клиентская часть ОС – средства запроса доступа к удаленным (т.е. принадлежащим другим компьютерам сети) ресурсам и услугам;

­ транспортные, или коммуникационные средства ОС – средства, совместно с коммуникационной системой обеспечивающие обмен сообщениями в сети.

Рис1.1 Основные функциональные компоненты сетевой ОС.

Правила взаимодействия компьютеров при передаче сообщений по сети фиксируются в коммуникационных протоколах (Ethernet, Token Ring, IP, IPX и пр.).

Упрощенная схема работы сетевых ОС иллюстрируется на рисунке 1.2. на примере взаимодействия двух компьютеров.

Рис1.2 Упрощенная схема работы сетевых ОС

Суть взаимодействия: пусть приложение, работающее на первом компьютере, использует файлы, размещенные на диске второго компьютера.

Для компьютера 1 дисковое пространство диска 2 является запрашиваемым удаленным ресурсом, следовательно, запрос на этот ресурс формируется клиентской частью ОС1. ОС2 предоставляет ресурс, следовательно, запрос будет обрабатываться серверной частью ОС2.

На рисунке в клиентской части ОС1 выделен компонент, названный редиректором (от redirect – перенаправлять). Это – программный модуль, предназначенный для распознавания запросов к удаленным и локальным файлам и перенаправления первых к удаленной машине. В таком случае приложения на клиентской машине не должны заботиться о том, с какими файлами они работают – удаленными или локальными. Если функции перенаправления присутствуют в клиентской части сетевой ОС, то редиректором часто называют всю клиентскую часть.

Требования к современным ОС

Суть требований к функциональности ОС состоит в управлении ресурсами и обеспечении интерфейса пользователя и прикладных программ. Помимо этого, к операционным системам предъявляется целый ряд важных эксплуатационных требований.

Расширяемость – возможность внесения изменений без нарушения целостности системы. Расширяемость достигается за счет модульной структуры ОС: программы строятся из набора отдельных модулей, взаимодействующих только через функциональный интерфейс.

Переносимость . В идеале код ОС должен легко переноситься с процессора одного типа на процессор другого типа и с аппаратной платформы одного типа на аппаратную платформу другого типа. Поскольку переносимые ОС имеют несколько вариантов реализации для разных платформ, это свойство называют также многоплатформенностью.

Совместимость . Если ОС имеет средства для выполнения прикладных программ, написанных для других операционных систем, то она обладает совместимостью с этими ОС. Различают: совместимость на уровне двоичных кодов (исполняемых программ); на уровне исходных текстов; поддержку пользовательских интерфейсов других ОС.

Надежность и отказоустойчивость . Система должна быть защищена от внутренних и внешних ошибок, сбоев и отказов. Ее действия должны быть предсказуемы, а приложения не должны иметь возможности наносить вред ОС.

Эти свойства обеспечиваются архитектурными решениями, положенными в основу ОС, качеством их реализации (отлаженностью кода) и программной поддержкой аппаратных средств обеспечения отказоустойчивости (например, источников бесперебойного питания).

Безопасность . Заключается в защите данных и других ресурсов от несанкционированного доступа. Обеспечивается средствами аутентификации (определения легальности пользователя), авторизации (предоставления дифференцированных прав доступа к ресурсам), аудита (фиксации «подозрительных» с точки зрения безопасности событий).

Производительность – настолько хорошее быстродействие и время реакции, насколько это позволяет аппаратная платформа. Определяется архитектурой ОС, многообразием функций, качеством кода, возможностью использования высокопроизводительной аппаратной платформы.

Итак, подведем итоги. Операционные системы классифицируются по:

­ количеству одновременно работающих пользователей: однопользовательские, многопользовательские;

­ числу процессов, одновременно выполняемых под управлением системы: однозадачные, многозадачные;

­ количеству поддерживаемых процессоров: однопроцессорные, многопроцессорные;

­ разрядности кода ОС: 8-разрядные, 16-разрядные, 32-разрядные, 64-разрядные;

­ типу интерфейса: командные (текстовые) и объектно-ориентированные (графические);

­ типу доступа пользователя к ЭВМ: с пакетной обработкой, с разделением времени, реального времени;

­ типу использования ресурсов: сетевые, локальные.

В соответствии с первым признаком классификации многопользовательские операционные системы, в отличие от однопользовательских, поддерживают одновременную работу на ЭВМ нескольких пользователей за различными терминалами.

Второй признак предполагает деление ОС на многозадачные и однозадачные. Понятие многозадачности означает поддержку параллельного выполнения нескольких программ, существующих в рамках одной вычислительной системы, в один момент времени. Однозадачные ОС поддерживают режим выполнения только одной программы в отдельный момент времени.

В соответствии с третьим признаком многопроцессорные ОС, в отличие от однопроцессорных, поддерживают режим распределения ресурсов нескольких процессоров для решения той или иной задачи.

Четвертый признак подразделяет операционные системы на 8-, 16-, 32- и 64-разрядные. При этом подразумевается, что разрядность операционной системы не может превышать разрядности процессора.

В соответствии с пятым признаком ОС по типу пользовательского интерфейса делятся на объектно-ориентированные (как правило, с графическим интерфейсом) и командные (с текстовым интерфейсом).

Согласно шестому признаку ОС подразделяются на системы:

­ пакетной обработки , в которых из программ, подлежащих выполнению, формируется пакет (набор) заданий, вводимых в ЭВМ и выполняемых в порядке очередности с возможным учетом приоритетности;

­ разделения времени (TSR), обеспечивающих одновременный диалоговый (интерактивный) режим доступа к ЭВМ нескольких пользователей на разных терминалах, которым по очереди выделяются ресурсы машины, что координируется операционной системой в соответствии с заданной дисциплиной обслуживания;

­ реального времени , обеспечивающих определенное гарантированное время ответа машины на запрос пользователя с управлением им какими-либо внешними по отношению к ЭВМ событиями, процессами или объектами.

В соответствии с седьмым признаком классификации ОС делятся на сетевые и локальные. Сетевые ОС предназначены для управления ресурсами компьютеров, объединенных в сеть с целью совместного использования данных, и предоставляют мощные средства разграничения доступа к данным в рамках обеспечения их целостности и сохранности, а также множество сервисных возможностей по использованию сетевых ресурсов.

Контрольные вопросы

1. Какие основания являются наиболее существенными для построения классификации ОС?

2. Перечислите известную Вам классификацию ОС по области использования.

3. Какие существуют классы классификации ОС по типу аппаратной платформы?

4. Какие классификации ОС можно создать по внутренним алгоритмам управления ресурсами?

5. Расшифруйте термин «сетевая ОС».

6. Каково назначение сетевых ОС?

7. Что представляет собой распределенная ОС?

8. Какие средства для работы в сети должны включать сетевые операционные системы?

9. На какие компоненты подразделяются сетевые средства?

10. Какие требования предъявляются к современным ОС?